Theme-Logo
  • Login
  • Home
  • Course
  • Publication
  • Theses
  • Reports
  • Published books
  • Workshops / Conferences
  • Supervised PhD
  • Supervised MSc
  • Supervised projects
  • Education
  • Language skills
  • Positions
  • Memberships and awards
  • Committees
  • Experience
  • Scientific activites
  • In links
  • Outgoinglinks
  • News
  • Gallery
publication name Hydrothermally Synthesized Co3O4, α-Fe2O3, and CoFe2O4 Nanostructures: Efficient Nano-adsorbents for the Removal of Orange G Textile Dye from Aqueous Media
Authors Mostafa Y. Nassar1 · Talaat Y. Mohamed1 · Ibrahim S. Ahmed1 · Naglaa M. Mohamed1 · Mai Khatab1
year 2017
keywords Co3O4 · α-Fe2O3 · CoFe2O4 nanostructures · Orange G textile dye · Adsorption · Kinetics · Thermodynamics
journal J Inorg Organomet Polym
volume 27
issue Not Available
pages 1526–1537
publisher Not Available
Local/International International
Paper Link Not Available
Full paper download
Supplementary materials Not Available
Abstract

We herein report the preparation of Co3O4, α-Fe2O3, and CoFe2O4 nanostructures through a hydrothermal method followed by a subsequent heat treatment. The as-prepared nanostructures exhibited good adsorption properties for the removal of Orange G (OG) textile dye. Various parameters influencing the adsorption process have been investigated such as contact time, initial dye concentration, ionic strength, adsorbent dose, and temperature. The maximum adsorption capacity values were found to be 33.3, 53.2, and 62.0 mg/g, for Co3O4, CoFe2O4, and α-Fe2O3 nano-adsorbents, respectively. The adsorption data fit the pseudo-second-order kinetic and Langmuir isotherm models well. Based on the calculated thermodynamic constants: ΔH° (3.660, 14.82, and 0.4710 kJ/mol), ΔG° (from −0.8090 to −1.109, from −0.6444 to −1.682, and from −3.665 to −3.943 kJ/mol), and Ea (9.277, 5.060, and 12.10 kJ/mol), the adsorption of OG dye on the aforementioned nano-adsorbents, respectively, was found to be endothermic, spontaneous, and physisorption process. In addition, because of the relatively high adsorption capacity and chemical stability, the as-synthesized α-Fe2O3 adsorbent is suggested as a promising candidate for the removal of OG

Benha University © 2023 Designed and developed by portal team - Benha University