| publication name | Bayesian-based optimized deep learning model to detect COVID-19 patients using chest X-ray image data |
|---|---|
| Authors | Mohamed Loey, Shaker El-Sappagh, Seyedali Mirjalili |
| year | 2022 |
| keywords | |
| journal | Computers in Biology and Medicine |
| volume | Not Available |
| issue | Not Available |
| pages | Not Available |
| publisher | Not Available |
| Local/International | International |
| Paper Link | Not Available |
| Full paper | download |
| Supplementary materials | Not Available |
Abstract
Coronavirus Disease 2019 (COVID-19) is extremely infectious and rapidly spreading around the globe. As a result, rapid and precise identification of COVID-19 patients is critical. Deep Learning has shown promising performance in a variety of domains and emerged as a key technology in Artificial Intelligence. Recent advances in visual recognition are based on image classification and artefacts detection within these images. The purpose of this study is to classify chest X-ray images of COVID-19 artefacts in changed real-world situations. A novel Bayesian optimization-based convolutional neural network (CNN) model is proposed for the recognition of chest X-ray images. The proposed model has two main components. The first one utilizes CNN to extract and learn deep features. The second component is a Bayesian-based optimizer that is used to tune the CNN hyperparameters according to an objective function