| publication name | Analytical Comparison of Swarm Intelligence Optimization versus Behavioral Learning Concepts Adopted by Neural Networks (An Overview) |
|---|---|
| Authors | Hassan M. H. Mustafa |
| year | 2015 |
| keywords | |
| journal | |
| volume | Not Available |
| issue | Not Available |
| pages | Not Available |
| publisher | Not Available |
| Local/International | International |
| Paper Link | Not Available |
| Full paper | download |
| Supplementary materials | Not Available |
Abstract
Generally, in nature, non-human creatures perform adaptive behaviors to external environment they are living in. i.e. animals have to keep alive by improving their intelligent behavioral ability to be adaptable to their living environmental conditions. This paper presents an investigational comparative overview on adaptive behaviors associated with two diverse biological systems (Neural and Non-Neural). In more details, intelligent behavioral performance of Ant Colony System (ACS) in order to reach optimal solution of Traveling Sales-man Problem (TSP) is considered. That's investigated herein versus concepts of adaptive behavioral learning concerned with some animals (cats, dogs, and rats), in order to keep survive. More precisely, investigations of behavioral observations tightly related to suggested animals, supposed to obey discipline of biological information processing. So, Artificial Neural Network (ANN) modeling is a relevant tool to investigate such biological system observations. Moreover, an illustrative brief of ACS optimal intelligent behaviors to solve TSP is presented. Additionally, considering effect of noisy environment on learning convergence, an interesting analogy between both proposed biological systems is introduced. Finally, performance of three learning algorithms shown to be analogously in agreement with behavioral concepts of both suggested biological systems' performance. Keywords