Theme-Logo
  • Login
  • Home
  • Course
  • Publication
  • Theses
  • Reports
  • Published books
  • Workshops / Conferences
  • Supervised PhD
  • Supervised MSc
  • Supervised projects
  • Education
  • Language skills
  • Positions
  • Memberships and awards
  • Committees
  • Experience
  • Scientific activites
  • In links
  • Outgoinglinks
  • News
  • Gallery
publication name An Optimal Linear System Approximation of Nonlinear Fractional-order Memristor-Capacitor Charging Circuit
Authors M. S. Semary; H. L. Abdel Malek; Hany N. Hassan;A. G. Radwan
year 2016
keywords Memristor; Fractional element; Nonlinear fractional-order system; Memristor–capacitor charging circuit; Low-pass filter; Optimal solution
journal Microelectronics Journal
volume 51
issue Not Available
pages 58–66
publisher Not Available
Local/International International
Paper Link Not Available
Full paper download
Supplementary materials Not Available
Abstract

The analysis of nonlinear fractional-order circuits is a challenging problem. This is due to the lack of nonlinear circuit theorems and designs particularly in the presence of memristive elements. The response of a series connection of a simple resistor with fractional order capacitor and its analytical formulation in both charging and discharging phases is considered. The numerical simulation of fractional order HP memristor in series with a fractional order capacitor is also discussed. It is a demonstration of a simple nonlinear fractional-order memristive circuit in both charging and discharging cases. Furthermore, this paper introduces an approach to approximate nonlinear fractional-order memrisitve circuits by linear circuits using a minimax optimization technique. Hence, the new circuit can be analyzed using the con- ventional linear circuit theorems. The charging and discharging of a series fractional-order memristor with a fractional-order capacitor are discussed numerically. The effect of fractional-order parameters and memristor polarity are also investigated. Using a suitable optimization technique, an accurate approx- imation by a circuit that include a resistor and a fractional-capacitor is obtained for both charging and discharging cases. A great matching was observed between the frequency responses of the fractional-order nonlinear low pass filter based on fractional-order memristor and fractional-order capacitor and that of the optimized linear fractional order case. Similar matching is observed for the nonlinear and optimized cases when a periodic triangular waveform is applied using Fourier series expansion.

Benha University © 2023 Designed and developed by portal team - Benha University